Nucleon Spin Structure at JLab

Angela Biselli Fairfield University

MENU 2010, Williamsburg, 31st May

Jefferson Laboratory

CEBAF is a superconductive electron accelerator

- \rightarrow continuous beam
- → high longitudinal polarization
- → energy range → 0.75 –5.9 GeV
- \rightarrow current range $\rightarrow 0.1$ nA –200 μ A
- → Beam polarization 80-90%

Jefferson Lab experiments Hall A

- E94-010 Neutron extended GDH
- E97-103 g2n
- E97-110 GDH sum rule, spin structure ³He
- E99-117 High precision A_1^n at large x
- E01-012 Spin duality

Hall B

- \bullet eg1 p and D spin structure and moments, duality
- eg4 low Q2 GDH
- eg1dvcs semiinclusive and GPD

Hall C

- RSS Resonance Spin Structure
- SANE Spin Asymmetries on the Nucleon

Hall A

High Resolution Spectrometers (HRS)

- Angular acceptance 6 msr
- Resolution 1x10⁻⁴ FWHM
- Large momentum range (0.3-4.3 GeV, 0.3-3.3 GeV)
- Proton Polarimeter

- Longitudinal, transverse and vertical
- Luminosity= 10^{36} (1/s) (highest in the world)
- Effective polarized neutron target
- P=40% with 12µA beam

Hall B: EG1 and EG4 with CLAS

CEBAF

Acceptance

Large

•Six individually instrumented

sectors

- •Toroidal magnetic field
- •Multi-particle final state
- Spectrometer •Large acceptance

1998 - 2001 **EG1**: Q² = 0.05...5 GeV²

Largest possible kinematic coverage → inbending and outbending configuration, E = 1.6...5.8 GeV 2006 EG4: Q^2_{min} =0.015 GeV²

Focus on low Q² (GDH, χ PT) => lower beam energies (up to 3 GeV), new Cherenkov for optimal acceptance in outbending configuration, θ_e as small as 6 degrees

EG1/EG4 target (CLAS): Polarization up to 0.9 (p) or 0.4 (d) Luminosity up to $\sim 10^{34}$

Hall C: RSS and **SANE**

SANE setup

Polarized Electron Beam: 4.7, 5.9 GeV

Polarized Proton Target: ~⊥, ||

180

Ammonia (NH₃) Polarized via

DNP in 5T Magnetic Field

Electron Arm:

- Tracker
- Cerenkov
- Lucite
- BigCal

- HMS: High Momentum Spectrometer • Hall-C Spectrometer
- Packing Fractions

HEILOU

To Cal

HMS

"BETA"

Electron Arm

Helium Ba

Target

- Polarized NH₃/ND₃ targets
- Dynamical Nuclear Polarization
- Same as Hall B, but it can be rotated
 - Transverse polarization!
- In-beam average polarization
 70-90% for p 30-40% for d

4-94

- Luminosity up to
- $\sim 10^{35}$ (Hall C)

Signal Out

DIS of lepton off nucleon

Virtual photon probes the structure

Important variables: $Q^2 = -q^2 = 4 EE' \sin^2 \frac{\theta}{2}$ $W^2 = M^2 + 2M\nu - O^2$ $x = \frac{Q^2}{2M\gamma}$ $\frac{d^2\sigma}{d\Omega dE'} = \sigma_{Mott} \left[\frac{1}{v} F_2(x,Q^2) + \frac{2}{M} F_1(x,Q^2) \tan^2 \frac{\theta}{2} \right]$ $\frac{d^2 \sigma^{\uparrow\uparrow}}{d\Omega dE'} - \frac{d^2 \sigma^{\downarrow\uparrow}}{d\Omega dE'} = \frac{4\alpha^2 E'}{v E Q^2} \Big[\Big(E + E' \cos\theta \Big) g_1(x, Q^2) - 2M x g_2(x, Q^2) \Big]$ $\frac{d^2 \sigma^{\uparrow \Rightarrow}}{d\Omega dE'} - \frac{d^2 \sigma^{\downarrow \Leftarrow}}{d\Omega dE'} = \frac{4\alpha^2 E'}{\nu EQ^2} \sin\theta \left[g_1(x,Q^2) - \frac{2ME}{\nu} g_2(x,Q^2) \right]$

Virtual photon asymmetries
Experimentally:
$$A_{\parallel} = \frac{d\sigma^{\uparrow\uparrow} - d\sigma^{\downarrow\uparrow}}{2d\sigma_{unpol}} = D(A_1 + \eta A_2)$$
 D, η , d , ζ are functions of Q^2 , E', E, $R = \sigma_L / \sigma_{T...}$
 $A_L = \frac{d\sigma^{\uparrow\Rightarrow} - d\sigma^{\downarrow\Rightarrow}}{2d\sigma_{unpol}} = d(A_1 + \zeta A_2)$ $\gamma^2 = \frac{4M^2x^2}{Q^2}$
 $A_L = \frac{q\sigma^{\uparrow\Rightarrow} - d\sigma^{\downarrow\Rightarrow}}{2d\sigma_{unpol}} = d(A_1 + \zeta A_2)$ $\gamma^2 = \frac{4M^2x^2}{Q^2}$
The virtual photon asymmetries A_1 and A_2 can be extracted by varying the *direction of the nucleon polarization* or by varying the *beam energy* at fixed Q^2 , v
Large-x behavior of the A_1 **asymmetry**
• SU(6) \Rightarrow $A_1^p = \frac{5}{9}$, $A_1^n = 0$
• Hyperfine perturbed QM
• makes S=1 pairs more energetic than S=0 pairs $\Rightarrow A_1 \rightarrow 1$
• In DIS, and in pQCD
• Minimal gluon exchanges
• Spectator pair: quarks have opposite helicities
• At large x struck quark carries the helicity of the nucleon
• $A_1 \rightarrow 1$
Farrar and Jackson, PRL 35, 1416 (1975)

• P and d results fall below parameterization of world data at 10 GeV² \rightarrow include in DGLAP fits

• To be used to extract $\Delta q/q$ in this momentum transfer region

• p and d results are in better agreement with the HFP quark model

HP perturbed QM N. Isgur, Phys. Rev. D 59, 34013 F. Close and W. Mel

Hall B CLAS, Phys.Lett. B641 (2006) 11

F. Close and W. Melnitchouk, Phys. Rev. C 68, 035210

- New results from CLAS eg1b
- Better statistical precision
- Better systematic errors

Spin Structure Function
$$g_1$$
 and g_2
 $g_1(x) = \frac{1}{2} \sum_q e_q^2 (\Delta q + \Delta \overline{q}) = \frac{1}{2} \sum_q e_q^2 (q^+(x) - q^-(x) + \overline{q}^+(x) - \overline{q}^-(x))$
a) $S_{\gamma} + S_N = 1/2$
 $\sigma_{1/2} \approx q^+(x)$
b) $S_{\gamma} + S_N = 3/2$
 $\sigma_{3/2} \approx q^-(x)$

•Virtual photon couples to quarks of opposite helicity

 $\bullet q^+(x)$ or $q^-(x)$ are chosen by changing the configuration of the incident lepton and target nucleon spin

•
$$g_1(x) \sim \sigma_{1/2} - \sigma_{3/2}$$

 $g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \overline{g_2}(x,Q^2)$

•Not a simple interpretation

 $\boldsymbol{\sigma}$

• g_2^{WW} leading twist (twist 2)

• g_2^{WW} related to g_1 by the Wandzura-Wilczek relation $g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 g_1(y,Q^2) \frac{dy}{y}$

 $\overline{\bullet g}_2$ higher twist – quark-gluon, quark-quark correlations

g_1^p *(a)* Jefferson Lab

World data on the proton before JLab (without COMPASS)

g_1^p *(a)* Jefferson Lab

World data on the proton before JLab (without COMPASS)

World data on the proton including EG1

g_1^p *(a)* Jefferson Lab

World data on the proton before JLab (without COMPASS)

World data on the proton including EG1

...including resonance region data!

Effect of CLAS data on NLO fits of PDFs

NLO fit by Leader, Stamenov and Siderov, including both CLAS data and new COMPASS data on the deuteron

First moment
$$\Gamma_1$$
 and GDH
 $\Gamma_1(Q^2) = \int_0^l g_1(x,Q^2) dx$
At high Q² - QPM $g_1(x) = \frac{1}{2} \sum_i e_i^2 \Delta q_i(x)$
 $\Gamma_1^p = \frac{1}{9} (\frac{3}{4}a_3 + \frac{1}{4}a_8 + a_0)$ Net Quark Spin
 $\int_1^p = \frac{1}{9} (\frac{3}{4}a_3 + \frac{1}{4}a_8 + a_0)$ $a_0 = \Delta \Sigma$
Q² $\Rightarrow 0$ - GDH $\Gamma_1 = \int g_1(x,Q^2) dx \xrightarrow{Q^2 \to 0} \frac{Q^2}{2M^2} I_{GDH}$
 $I_{GDH} = \frac{M^2}{8\alpha\pi^2} \int_{thr}^\infty (\sigma_{1/2} - \sigma_{3/2}) \frac{dv}{v} = -\frac{1}{4}\kappa^2$

A connection between dynamic and static properties.

$$\Gamma_2 = \int_0^1 g_2(x) dx = 0$$

Brown: SLAC E155x Red: Hall C RSS Black: Hall A E94-010 Green: Hall A E97-110 (preliminary) Blue: Hall A E01-012 (very preliminary)

$$BC = Meas + low_x + Elastic$$

"Meas": Measured x-range

"low-x": refers to unmeasured low x part of the integral.

Assume Leading Twist Behaviour

Elastic: From well know FFs (<5%)

Γ_1 of p-n – Bjorken integral

2 particles final state

 $H(e,e'\pi^0)p$ $H(e,e'\pi^+)n$ $D(e,e'p\pi^-)p$ rho production eta production

$$\sigma(W, Q^2, \vartheta^*, \phi^*) \propto \sigma_o + P_e \sigma_e + P_t \sigma_t + P_e P_t \sigma_{et}$$

- Different sensitivities to resonant and non resonant contributions for the double (σ_{et}) and target (σ_t) polarization terms
- Polarized measurements to provide new constraints to phenomenological models which are based on previous unpolarized photo- and electro-production data

Semi-inclusive

- e p →e' p X
- Struck quark of different flavors produce the hadron with different probabilities —> SIDIS can help to separate contributions from quark flavors
- Access to orbital angular momentum of quarks
- Transverse momentum distributions

Study of spin orbit correlations in semi inclusive DIS and Sivers distribution function (E08-015)

Conclusions

- Broad spin program at Jefferson Lab.
- Complex look at the structure of the nucleon.
- Many observables asymmetries, structure functions, sum rules, moments
- New information to understand the transition between hadron and partonic degrees of freedom
- Plenty results from Jefferson Lab, large acceptance and access to resonance region
- Much more to come COMPASS+RHIC, Spring8, JLab @ 12
 GeV, J-PARC, FAIR, ... EIC?

Thanks to Sebastian Kuhn, Nevtzat Guler, Yelena Prok, Keith Griffioen, Jiang-Peng, Karl Slifer, Narbe Kalantarians, Oscar Rondon, K. Adhikari

Overview

- Spin Physics
- Experiments at JLab
- Nucleon Structure Functions results
- Future experiments
- Summary

 ${}^{\bullet}g_1/F_1$ falls below the DIS extrapolation at low Q2 (dashed curve)

Large-x behavior of the A₁ asymmetry

Large x region dominated by valence quarks→ can test quark models

- •SU(6) QM: Exact SU(6) symmetry Equal probability for S=0 and S=1 di-quark configuration
- Hyperfine perturbed QM Isgur, PRD 59, 034013 (2003) makes S=1 pairs more energetic than S=0 pairs
- Duality Close and Melnitchouk, PRC 68, 035210 (2003)

Suppress transitions to specific resonances $(56^+ \text{ and } 70^-)$

• In DIS, pQCD: Minimal gluon exchanges

Spectator pair: quarks have opposite helicities Farrar and Jackson, PRL 35, 1416 (1975)

Model for $x \rightarrow 1$	A_1^p	A_1^n	d/u	∆u/u	∆d/d
SU(6)	5/9	0	1/2	2/3	-1/3
w/ hyperfine ($E_{S=0} \le E_{S=1}$)	1	1	0	1	-1/3
One gluon exchange	1	1	0	1	-1/3
Suppressed symmetric WF	1	1	0	1	-1/3
S=1/2 dominance	1	1	1/14	1	1
$\sigma_{_{1/2}}$ dominance	1	1	1/5	1	1
pQCD (conserved helicity)	1	1	1/5	1	1

Parton Distributions Functions and NLO pQCD

- Two effects modify simple parton picture:
 - pQCD evolution makes PDFs Q²dependent (NLO DGLAP equations) – mild logarithmic dependence
 - (Gluon) radiative corrections change elementary cross section generating a contribution to g1 due to the gluon polarization

$$g_1^{\text{NLO}}(\mathbf{x}, \mathbf{Q}^2) = g_1^{\text{LO}} + \frac{1}{2} \left\langle e^2 \right\rangle \sum_{\mathbf{q}} e_{\mathbf{q}}^2 \left[\Delta \mathbf{q}(\mathbf{x}, \mathbf{Q}^2) \otimes C_{\mathbf{q}} + \Delta \mathbf{g}(\mathbf{x}, \mathbf{Q}^2) \otimes C_{\mathbf{g}} \right]$$

we can extract information on the gluon from DIS

Jefferson Laboratory and CLAS

CEBAF Large Acceptance Spectrometer •Six individually instrumented sectors

- •Toroidal magnetic field
- •Multi-particle final state
- •Large acceptance

CEBAF is a superconductive electron accelerator

- \rightarrow continuous beam
- \rightarrow high longitudinal polarization
- \rightarrow energy range $\rightarrow 0.75 5.9 \text{ GeV}$
- → current range → 0.1 nA –200mA
- → Beam polarization 80-90%

Experiments EG1 and EG4 with CLAS EG1: $Q^2 = 0.05...5$ GeV² EG4: $Q^2_{min}=0.015$ GeV²

Largest possible kinematic coverage → inbending and outbending configuration, E = 1.6...5.8 GeV

1998 - 2001

note: $m_{\pi}^2 = 0.02 \text{ GeV}^2$

Focus on low Q² (GDH, χ PT) => lower beam energies (up to 3 GeV), new Cherenkov for optimal acceptance in outbending configuration, θ_e as small as 6 degrees

Virtual photon asymmetries

$$\frac{d\sigma}{dE'd\Omega} = \Gamma_{v} \bigg[\sigma_{T} + \varepsilon \sigma_{L} + P_{e} P_{t} \bigg(\sqrt{1 - \varepsilon^{2}} A_{1} \sigma_{T} \cos \psi + \sqrt{2\varepsilon(1 - \varepsilon)} A_{2} \sigma_{T} \sin \psi \bigg) \bigg]$$

$$\mathbf{A_{1}} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{T}} \quad \mathbf{A_{2}} = \frac{\sigma_{LT'}}{\sigma_{T}}$$

the asymmetries A_1 and A_2 can be extracted by varying the *direction of the nucleon polarization* or by varying the *beam energy* at fixed Q², v

 $A_{\rm H} = D(A_1 + \eta A_2)$ $A_{\perp} = d(A_1 + \zeta A_2)$

[where D, η , d, ζ are functions of Q², E', E, R, e.g.:

$$D = \frac{1 - \varepsilon E^2 / E}{1 + \varepsilon R}$$
$$\eta = \frac{\varepsilon \sqrt{Q^2}}{E - \varepsilon E^2} \qquad \qquad R = \frac{\sigma_L}{\sigma_T}$$

EG1 used parameterization of world data on A_2 to extract A_1 (η is usually small)

$$A_1 \approx \frac{\displaystyle\sum_i e_i^2 \Delta q_i(x)}{\displaystyle\sum_i e_i^2 q_i(x)}$$

 $\boldsymbol{\theta}_{e}$

nucleon

P_

$$A_{raw} = \frac{N^{-}/Q^{-} - N^{+}/Q^{+}}{N^{-}/Q^{-} + N^{+}/Q^{+}}$$

Physics asymmetry A₁₁

$$A_{\parallel \perp} = \frac{C_{back} A_{raw}}{P_e P_t \times DF}$$

$$A_1 + \eta A_2 = \frac{A_{//}}{D}$$

N^{+/-}Yield for electron/target spins

- antiparallel (-) or parallel (+)
- Q^{+/-} gated FC
- P_e Beam polarization
- P_t Target polarization
- DF Dilution factor
- C_{back}Background processes (pion contamination & pair symmetric)

$$D = \frac{1 - E'\varepsilon/E}{1 + \varepsilon R}; \quad \eta = \frac{\varepsilon\sqrt{Q^2}}{E - E'\varepsilon} \quad R = \frac{\sigma_L}{\sigma_T}$$

 A_1, g_1 can be extracted

the structure functions $\mathbf{g_1}$ and $\mathbf{g_2}$ are linear combinations of $\mathbf{A_1}$ and $\mathbf{A_2}$

$$g_{1}(x,Q^{2}) = \frac{\tau}{1+\tau} (A_{1} + \frac{1}{\sqrt{\tau}}A_{2})F_{1} = \frac{\tau}{1+\tau} \left(\frac{A_{\parallel}}{D} + \left(\frac{1}{\sqrt{\tau}} - \eta\right)A_{2}\right)F_{1}$$
$$g_{2}(x,Q^{2}) = \frac{\tau}{1+\tau} (\sqrt{\tau}A_{2} - A_{1})F_{1}$$
$$\tau = \frac{\nu^{2}}{Q^{2}}$$

Outlook: The Future at JLab

- Remaining experiments at 6 GeV
 - Hall A
 - E-06-010: Transverse target single spin asymmetry in n $(e,e'\pi)$
 - E-06-011: Transverse target single spin asymmetry in n $(e, e'\pi^+)$
 - E-06-014: Precision measurement of d_2 on the neutron
 - E-08-027: g_{2p} and δ_{LT}
 - Hall B
 - E-05-113: Semi-inclusive pion production (and DVCS) on $p \rightarrow$

RUIDDING DONN!

- E-08-015: Semi-inclusive pion production (and DVCS) on p↑
- Hall C
 - E-07-011: High precision g_{1d} in DIS region
 - E-07-003: SANE (SSFs on p, with emphasis on g₂)
- Approved experiments for 12 GeV
 - Hall A/C
 - E12-06-122: A_{1n} at high x with 8.8 GeV and 6.6 GeV beam in Hall A
 - E12-06-121: Precision measurement of g_2 and d_2 on the neutron
 - Hall B
 - E12-06-10: SSFs on longitudinal target with CLAS12
 - E12-07-107: Semi-inclusive pion production on p→